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Chapter 1. Newtonian Mechanics – Single Particle 
 

(Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 
2) 
 
Since our course on the subject of Classical Mechanics could accurately be called “A 
1001 ways of writing F = ma ”, we will start from the beginning … 
 
1.1 Newton’s Laws 
 
Newton’s Laws are usually simply stated as: 
 

I. A body remains at rest or in uniform motion unless acted upon by a force. 
 

II. A body acted upon by a force moves in such a manner that the time rate of change 
of the momentum equals the force. 

 
III. If two bodies exert forces on each other, these forces are equal in magnitude and 

opposite in direction. 
 
 The First Law is meaningless without the concept of “force”, but conveys a precise 
meaning for the concept of “zero force”. 
 
The Second Law is very explicit: Force is the time rate of change of the momentum. But 
what is the momentum p … 
 
 p ! mv , (1.1) 
 
with m the mass, and v the velocity of the particle. We, therefore, re-write the Second 
Law as 
 

 F =
dp

dt
=
d

dt
mv( ) . (1.2) 

 
However, we still don't have a definition for the concept of "mass". This is made clear 
with the Third Law, which can be rewritten as follows to incorporate the appropriate 
definition of mass: 
 

III'. If two bodies constitute an ideal, isolated system, then the accelerations of these 
bodies are always in opposite direction, and the ratio of the magnitudes of the 
accelerations is constant. This constant ratio is the inverse ratio of the masses of 
the bodies. 

 
If we have two isolated bodies, 1 and 2, then the Third Law states that 
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and from the Second Law, we have 
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and using the acceleration a 
 

 
m
1
a
1
= !m

2
a
2

m
1

m
2

= !
a
2

a
1

.
 (1.6) 

 
If one chooses m1 as the reference or unit mass, m2, or the mass of any other object, can 
be measured by comparison (if it is allowed to interact with m1). Incidentally, we can use 
equation (1.4) to provide a different interpretation of Newton’s Second Law 
 

 
d

dt
p
1
+ p

2( ) = 0  (1.7) 

 
or 
 
 p

1
+ p

2
= constant. (1.8) 

   
The momentum is conserved in the interaction of two isolated particles. This is a special 
case of the conservation of linear momentum.  
 
One should note that the Third Law is not a general law of nature. It applies when dealing 
with central forces (e.g., gravitation (in the non-relativistic limit), electrostatic, etc.), but 
not necessarily to other types of forces (e.g., velocity-dependent forces such as between 
to moving electric charges). 
 
1.2 Frames of Reference 
 
A reference frame is called an inertial frame if Newton’s laws are valid in that frame. 
More precisely, 
 

• If a body subject to no external forces moves in a straight line with constant 
velocity, or remains at rest in a reference frame, then this frame is inertial. 



 - 3 - 

• If Newton’s laws are valid in one reference frame, they are also valid in any other 
reference frame in uniform motion (or not accelerated) with respect to the first 
one. 

 
The last point can be expressed mathematically like this. If the position of a free particle 
of mass m is represented by r in a first inertial frame, and that a second frame is moving 
at a constant velocity !V

2
 relative to the first frame, then we can write the position r '  of 

the particle in the second frame by 
 
 r ' = r + V

2
t . (1.9) 

 
The particle’s velocity v '  in that same frame is 
 

 
v ' =

d

dt
r + V

2
t( ) =

dr

dt
+ V

2

= v + V
2
,

 (1.10) 

 
where v is the velocity of the particle in the first frame. Similarly, we can calculate the 
particle’s acceleration in the second frame ( a ' ) as a function of its acceleration (a) in the 
first one 
 

 
a ' =

dv '

dt
=
d

dt
v + V

2( )

=
dv

dt
= a .

 (1.11) 

 
We conclude that the second reference frame is inertial since Newton’s laws are still 
valid in it (F ' = ma ' = ma ). This result is called Galilean invariance, or the principle of 
Newtonian relativity. 
 
Newton’s equations do not describe the motion of bodies in non-inertial reference frame 
(e.g., rotating frames). That is to say, in such frames Newton’s Second Law, or the 
equation of motion, does not have the simple formF = ma . 
 
1.3 Conservation Theorems  
 
We now derive three conservation theorems that are consequences of Newton’s Laws of 
dynamics. 
 
1.3.1 Conservation of linear momentum 
 
This theorem was derived in section 1.1 for the case of two interacting isolated particles 
(see equations (1.7) and (1.8)). We now re-write it more generally from Newton’s Second 
Law (equation (1.2)) for cases where no forces are acting on a (free) particle  
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!p = 0  (1.12) 

 
where 

 
!p  is the time derivative of p , the linear momentum. Note that equation (1.12) is 

a vector equation, and, therefore, applies for each component of the linear momentum. In 
cases where a force is applied in a well-defined direction, a component of the linear 
momentum vector may be conserved while another is not. For example, if we consider a 
constant vector s such that  Fis = 0  (the force F is in a direction perpendicular to s), then 
 
 

 
!pis = Fis = 0 . (1.13) 

 
If we integrate with respect to time, we find 
 
 

 
pis = constant. (1.14) 

 
Equation (1.14) states that the component of linear momentum in a direction in which the 
forces vanishes is constant in time. 
 
1.3.2 Conservation of angular momentum  
 
The angular momentum L  of a particle with respect to an origin from which its 
position vector r  is being measured is given by 
 
 L ! r " p . (1.15) 
 
The torque or moment of force N  with respect to the same origin is given by 
 
 N ! r " F , (1.16) 
 
 
where the force F is being applied at the position r. Because the force is the time 
derivative of the linear momentum, we can write 
 

 
 

!L !
dL

dt
=
d

dt
r " p( ) = !r " p( ) + r " !p( ) , (1.17) 

 
but 

 
!r ! p = 0 , since  !r = v  andp = mv . We, therefore, find that 

 
 

 
!L = r ! !p = N . (1.18) 

 
It follows that the angular momentum vector L  will be constant in time ( !L = 0 ) if no 
torques are applied to the particle (N = 0 ). That is, the angular momentum of a particle 
subject to no torque is conserved. 
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Note that equation (1.18) is an equation of (angular) motion that can be written in a form 
similar to F = ma  if we substitute N  for F , the moment of inertia tensor I{ }  for m, and 
the angular acceleration !  for a . So, if we introduce the angular velocity ! , which is 
related to v  through v = ! " r , we can write 
 

 

 

L = r ! p = mr ! v

= mr ! " ! r( )

= m r
2" # r ri"( )$% &'

 (1.19) 

 
where we used the vector relation 

 
A ! B ! A( ) = A2B " A AiB( ) . Introducing the unit 

tensor 1{ } , we can write 
 
! = 1{ }i!  and 

 

 
 

L = m[r
2
1{ } ! r(ri 1{ })]i"

= I{ }i"
 (1.20) 

 
with the inertia tensor given by 
 
 

 
I{ } = m r

2
1{ } ! r(ri 1{ })"# $% .  (1.21) 

 
If we now use equation (1.18), and  ! = !" , we finally get 
 
 

 
N = !L = I{ }i!.  (1.22) 

 
1.3.3 Conservation of energy 
 
If we consider the resultant of all forces (i.e., the total force) applied F to a particle of 
mass m between two points “1” and “2”, we define the work done by this force on the 
particle by 
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1

2

" . (1.23) 

 
We can rewrite the integrand as 
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 (1.24) 
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Since equation (1.24) is an exact differential, we can integrate equation (1.23) and find 
the work done on the particle by the total force 
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1
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 (1.25) 

 

where T !
1

2
mv

2  is the kinetic energy of the particle. The particle has done work 

whenW
12
< 0 . 

 
Similarly, we can also define the potential energy of a particle as the work required, 
from the force F, to transport the particle from point “1” to point “2” when there is no 
change in its kinetic energy. We call this type of forces conservative (e.g., gravity). That 
is 
 
 

 

Fidr !U
1
"U

2
,

1

2

#  (1.26) 

 
Where U

i
 is the potential energy at point “ i ”. The work done in moving the particle is 

simply the difference in the potential energy at the two end points. Equation (1.26) can be 
expressed differently if we consider F as being the gradient of the scalar function U (i.e., 
the potential energy) 
 
 F = !"U . (1.27) 
 
The potential energy is, therefore, defined only within an additive constant. Furthermore, 
in most systems of interest the potential energy is a function of position and time, i.e., 
U =U r,t( ) , not the velocity !r . 
 
We now define the total energy E  of a particle as the sum of its kinetic and potential 
energies 
 E ! T +U.  (1.28) 
 
The total derivative of E  is 
 

 
dE

dt
=
dT

dt
+
dU

dt
. (1.29) 

 
Since we know from equation (1.24) that  dT = Fidr , then 
 

 
 

dT

dt
= Fi

dr

dt
= Fi!r.  (1.30) 
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On the other hand 
 

 

 

dU

dt
=

!U

!x
i

!x
i

!t
+
!U

!ti

"

= #U( )i!r +
!U

!t
.

 (1.31) 

 
Inserting equations (1.30) and (1.31) in equation (1.29), we find  
 

 

 

dE

dt
= Fi!r + !U( )i!r +

"U

"t

= F +!U( )i!r +
"U

"t

=
"U

"t
.

 (1.32) 

 
The last step is justified because we are assuming that F is a conservative force 
(i.e.,F = !"U ). 
 

Furthermore, for cases where U  is not an explicit function of time, we have 
!U

!t
= 0  and 

 

 
dE

dt
= 0. (1.33) 

 
We can now state the energy conservation theorem as: the total energy of a particle in a 
conservative field is a constant in time. 
  
Finally, we group the three conservation theorems that we derived from Newton’s 
equations: 
 

I. The total linear momentum p of a particle is conserved when the total force on it 
is zero. 

II. The angular momentum of a particle subject to no torque is constant. 
III. The total energy of a particle in a conservative field is a constant in time. 
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Problems 
 
(The numbers refer to the problems at the end of Chapter 2 in Thornton and Marion.)  
 
2-2. A particle of mass m is constrained to move on the surface of a sphere of radius R 

by an applied forceF !,"( ) . Write the equation of motion. 

Solution 
Using spherical coordinates, we can write the force applied to the particle as 
 
 F = F

r
e
r
+ F!e! + F"e" .  (1.34) 

 
But since the particle is constrained to move on the surface of a sphere, there must exist a 
reaction force !F

r
e
r
 that acts on the particle. Therefore, the total force acting on the 

particle is 
 
 

 
F
total

= F!e! + F"e" = m!!r.  (1.35) 
 
The position vector of the particle is 
 
 r = Re

r
,  (1.36) 

 
where R is the radius of the sphere and is constant. The acceleration of the particle is 
 
 

 
a = !!r = R!!e

r
. (1.37) 

 
We must now express 

 
!!e
r
 in terms of e

r
, e

!
, and e! . Because the unit vectors in 

rectangular coordinates e
1
, e

2
, and e

3
, do not change with time, it is convenient to make 

the calculation in terms of these quantities. Using Figure 1.1 for the definition of a 
spherical coordinate system we get  
 

 
e
r
= e

1
sin ! cos " + e

2
sin ! sin " + e

3
cos!

e! = e1 cos! cos " + e
2
cos! sin " # e

3
sin !

e" = #e
1
sin " + e

2
cos ".

 (1.38) 

 
Then 
 

 

 

!e
r
= e

1
! !" sin # sin " + !# cos# cos "( )

+e
2
!# cos# sin " + !" sin # cos "( ) ! e3 !# sin #

= e"
!" sin # + e#

!#.

 (1.39) 
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Figure 1.1 – Spherical coordinate system. 
Similarly, 
 

 
 

!e! = "e
r

!! + e#
!# cos!

!e# = "e
r

!# sin ! " e!
!# cos!.

 (1.40) 

 
And, further, 
 
 

 
!!e
r
= !e

r

!" 2 sin2 # + !# 2( ) + e# !!# ! !" 2 sin # cos#( ) + e" 2 !# !" cos# + !!" sin #( ),  (1.41) 
 
which is the only second time derivative needed. The total force acting on the particle is 
 
 

 
F
total

= m!!r = mR!!e
r
,  (1.42) 

 
and the components are 
   

 

 

F! = mR
!!! " !# 2 sin ! cos!( )

F# = mR 2 !! !# cos! + !!# sin !( )
 (1.43) 

 

2-32. A string connects two blocks of unequal mass over a smooth pulley. If the 
coefficient of friction isµ

k
, what angle !  of the incline allows the masses to move 

at constant speed? 
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Figure 1.2 - What inclination angle will make the masses move at constant speed? 

 
Solution 
 
The forces on the hanging mass are easily determined from the following figure 
 

   
The equation of motion is (calling downward positive) 
 
 mg ! T = ma,  (1.44) 
 
or  
 
 T = m g ! a( ). (1.45) 
 
The forces on the other mass can be derived from the following figure 
 

   



 - 11 - 

The y  equation of motion gives 
 
 

 
N ! 2mg cos" = m!!y = 0,  (1.46) 

 
or 
 
 N = 2mg cos!.  (1.47) 
 
The x  equation of motion gives with Ff = µkN = 2µkmg cos!( )  
 
 T ! 2mg sin " ! 2µkmg cos" = ma.  (1.48) 
 
Substituting from (1.45) into (1.48) 
 
 mg ! 2mgsin " ! 2µkmgcos" = 2ma.  (1.49) 
 
When ! = !

0
 and a = 0  we get 

 
 g ! 2g sin "

0
! 2µkg cos"0 = 0,  (1.50) 

 
and 
 

 
1

2
= sin !

0
+ µ

k
cos!

0

= sin !
0
+ µ

k
1" sin

2
!
0( )
1 2

.

 (1.51) 

 
Isolating the square root, squaring both sides, and rearranging gives 
 

 1+ µ
k

2( )sin2 !0 " sin !0 +
1

4
" µ

k

2#
$%

&
'(
= 0. (1.52) 

 
Using the quadratic formula gives 
 

 sin !
0
=
1± µ

k
3+ 4µ

k

2

2 1+ µ
k

2( )
 (1.53) 

 
 


